The structure of a novel glucuronoyl esterase from Myceliophthora thermophila gives new insights into its role as a potential biocatalyst.
نویسندگان
چکیده
The increasing demand for the development of efficient biocatalysts is a consequence of their broad industrial applications. Typical difficulties that are encountered during their exploitation in a variety of processes are interconnected with factors such as temperature, pH, product inhibitors etc. To eliminate these, research has been directed towards the identification of new enzymes that would comply with the required standards. To this end, the recently discovered glucuronoyl esterases (GEs) are an enigmatic family within the carbohydrate esterase (CE) family. Structures of the thermophilic StGE2 esterase from Myceliophthora thermophila (synonym Sporotrichum thermophile), a member of the CE15 family, and its S213A mutant were determined at 1.55 and 1.9 Å resolution, respectively. The first crystal structure of the S213A mutant in complex with a substrate analogue, methyl 4-O-methyl-β-D-glucopyranuronate, was determined at 2.35 Å resolution. All of the three-dimensional protein structures have an α/β-hydrolase fold with a three-layer αβα-sandwich architecture and a Rossmann topology and comprise one molecule per asymmetric unit. These are the first crystal structures of a thermophilic GE both in an unliganded form and bound to a substrate analogue, thus unravelling the organization of the catalytic triad residues and their neighbours lining the active site. The knowledge derived offers novel insights into the key structural elements that drive the hydrolysis of glucuronic acid esters.
منابع مشابه
A New Functional Classification of Glucuronoyl Esterases by Peptide Pattern Recognition
Glucuronoyl esterases are a novel type of enzymes believed to catalyze the hydrolysis of ester linkages between lignin and glucuronoxylan in lignocellulosic biomass, linkages known as lignin carbohydrate complexes. These complexes contribute to the recalcitrance of lignocellulose. Glucuronoyl esterases are a part of the microbial machinery for lignocellulose degradation and coupling their role ...
متن کاملGlucuronoyl esterase--novel carbohydrate esterase produced by Schizophyllum commune.
The cellulolytic system of the wood-rotting fungus Schizophyllum commune contains an esterase that hydrolyzes methyl ester of 4-O-methyl-d-glucuronic acid. The enzyme, called glucuronoyl esterase, was purified to electrophoretic homogeneity from a cellulose-spent culture fluid. Its substrate specificity was examined on a number of substrates of other carbohydrate esterases such as acetylxylan e...
متن کاملGenomic insights into the fungal lignocellulolytic system of Myceliophthora thermophila
The microbial conversion of solid cellulosic biomass to liquid biofuels may provide a renewable energy source for transportation fuels. Cellulolytic fungi represent a promising group of organisms, as they have evolved complex systems for adaptation to their natural habitat. The filamentous fungus Myceliophthora thermophila constitutes an exceptionally powerful cellulolytic microorganism that sy...
متن کاملEfficient plant biomass degradation by thermophilic fungus Myceliophthora heterothallica.
Rapid and efficient enzymatic degradation of plant biomass into fermentable sugars is a major challenge for the sustainable production of biochemicals and biofuels. Enzymes that are more thermostable (up to 70°C) use shorter reaction times for the complete saccharification of plant polysaccharides compared to hydrolytic enzymes of mesophilic fungi such as Trichoderma and Aspergillus species. Th...
متن کاملNovel and cost-effective biocatalyst consisting of nanofibrillated cellulose and TiCl3 for the synthesis of 2,3'-dihydroquinazolin-4-(1H)-ones
A novel and cost-effective catalyst for synthesis of 2,3'-dihydroquinazolin-4-(1H)-ones was developed utilizing a combined nanocomposite obtained from bonding TiCl3 to hydroxyl groups of nanofibrillated cellulose as a green and inexpensive support.The structure of the catalyst was investigated using the Fourier transform infrared spectroscopy (FT-IR), field emission scanning...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta crystallographica. Section D, Biological crystallography
دوره 69 Pt 1 شماره
صفحات -
تاریخ انتشار 2013